
  

 

 

  

Abstract – In this paper, a new terminal sliding mode tracking 

control scheme is developed for a class of nonminimum phase 

systems with uncertainties. It is shown that, unlike conventional 

linear or terminal sliding mode controls, the Lyapunov stability 

theory in this paper is used to determine the upper and the lower 

bounds of the control signal and its derivative. A dynamic control 

signal can then be designed, subject to the bounded conditions, to 

drive the terminal sliding variable to converge to zero, and, on the 

terminal sliding mode surface, the tracking error is guaranteed to 

converge to zero in a finite time. A simulation example is 

presented in support of the proposed robust tracking control 

scheme. 

 
Index Terms— Terminal sliding mode control; nonminimum 

phase; system  uncertainties; Lyapunov stability.  

I. INTRODUCTION 

The tracking control of nonminimum phase systems has 

been widely investigated by many researchers in the last three 

decades [1]-[17]. It is pointed out in [1]-[4] that the perfect 

tracking or asymptotic tracking control of nonminimum 

systems with zeros on the right-half s-plane cannot be achieved 

by using simple feedback control laws because of the unstable 

internal dynamics. It is also noted from [5]-[6] that the exact 

output tracking input can be found using the stable inversion 

approach, however, the challenge of implementing such a 

control strategy is that the entire desired reference signal must 

be known. The research results in [7]-[12] show that some 

bounded error tracking control with small tracking error can be 

achieved for some desired trajectories of particular interests. In 

order to handle the uncertainties and disturbances in the 

tracking control of nonminimum phase systems, some adaptive 

control schemes have been developed in [13]-[17]. However, it 

seems that no results on the asymptotic tracking control of non-

minimum phase systems with large uncertainties have been 

reported.  
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In this paper, we will develop a new tracking control 

scheme for a class of non-minimum phase systems with 

uncertain dynamics, based on terminal sliding mode control 

technique [18]-[21]. It will be shown that, unlike the design of 

conventional sliding mode control systems where Lyapunov 

stability theory is used to determine the values of control 

signals to guarantee the closed-loop stability [22]-[25], 

Lyapunov stability theory in this paper is used to determine 

upper and lower bounds of control signal and its first-order 

derivative, a dynamic control law can then be constructed, 

subject to the bounded conditions, to drive the terminal sliding 

variable to converge to zero in a finite time, and the tracking 

error between the desired reference signal and the system 

output can then converge to zero in a finite time on the terminal 

sliding mode surface. A simulation example is given to show 

the finite time error convergence and the strong robustness 

property with respect to large parameter uncertainties of a 

closed-loop nonminimum phase system using the proposed new 

terminal sliding mode tracking control scheme. 

 The paper is organized as follows. In Section 2, the upper 

and lower bounds of the control signal and its first derivative 

are determined in the sense of Lyapunov stability, and a 

dynamics control signal is constructed, subject to the bounded 

conditions, to guarantee a finite-time convergence of the 

tracking error. In Section 3, a simulation example is presented 

to show the effectiveness of the proposed new terminal sliding 

mode control scheme for the tracking control of nonminimum 

phase systems.  

II. MAIN RESULT 

Consider a class of second-order nonminimum phase 

systems described by the following differential equation:  

               ( ) ( ) ( ) ( ) 1 
,x t f x x u t b u t= + −�� � �                  (1) 

where ( )u t and ( )x t  are the system input and output, 

respectively, ( ),f x x�  is an unknown linear or nonlinear 

function,  satisfying the following bounded condition: 

                                   ( ) ( )0, ,f x x f x x≤� �                           (2) 

1b  is an unknown parameter which is upper and lower-bounded 

by 

                                      10 1 110 b b b< < <                            (3) 

the positive function ( )0 ,f x x�  and the positive constants 10b  

and 11b  in (2) and (3) are known. 
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 In this paper, we assume that the control input ( ) ,u t the 

system output ( )x t , and its derivative ( )x t� are measurable. Let 

( )rx t  be the desired reference signal for the system output x(t) 

to follow. The tracking error between the system output x(t) 

and the desired reference signal ( )rx t is then defined as: 

                                   ( ) ( ) ( )r
e t x t x t= −                            (4) 

In order to use the terminal sliding mode control technique 

for designing the tracking controller, we define the following 

terminal sliding variable [18]-[21]: 

            ( ) ( ) ( ) ( )
 

  

/
si gn

q p
s t e t e e tβ= +� �                 (5) 

where β  is a positive constant, q and p are positive odd 

integers satisfying: 

                                          2> / 1q p >                                 (6) 

Differentiate the sliding variable s(t) with respect to time t, we 

obtain:  

                           ( ) ( ) ( ) ( )
  1

q

p
q

s t e t e t e t
p

β
−

= +� � �� �          

    ( ) ( ) ( ) ( ) ( )( ) ( )
  1

 1 ,
q

p
r

q
e t f x x u t b u t x t e t

p
β

−
= + − − +� � � �� �     (7) 

Theorem 2.1:  Consider the nonminimum phase system in (1). 

If the control signal u(t) and its first-order derivative ( )u t�  

satisfy the following bounded conditions: 

If 0s >          ( ) ( ) ( )( )0

10

1
,ru t x t f x x

b
≥ +� �� �                        (8a) 

and             ( ) ( ) ( )
2

q

p
p

u t e t sign s
q

β η
−

< − −�                     (8b) 

If 0s <        ( ) ( ) ( )( )0

10

1
,ru t x t f x x

b
≤ − +� �� �                        (9a) 

and               ( ) ( ) ( )
2

q

p
p

u t e t sign s
q

β η
−

> −�                      (9b) 

where η  is a positive constant, then the output tracking error 

e(t) will converge to zero in a finite time.  

Proof: Defining a Lyapunov function candidate: 

                 
21
( )

2
V s t=                                      (10) 

and differentiating V with respect to time t, we have 

                                       ( ) ( )V s t s t=� � , 

  ( ) ( ) ( ) ( ) ( ) ( )( ) ( )
  1

 1 ,
q

p

r

q
s t e t f x x u t b u t x t e t

p
β

− 
= + − − + 

 
� � � �� �  

            ( ) ( ) ( ) ( ) ( )( )  1

 1 ,
q

p

r

q
s t e t f x x x t b u t

p

−
= − −� � �� �                      

                     ( ) ( ) ( ) ( )
  1

q

p
q

s t e t u t e t
p

β
− 

+ + 
 
� �                     (11) 

(i)  If 0s > , using (8a) in the first term of (11), we have 

               ( ) ( ) ( ) ( ) ( )( )  1

 1 ,
q

p

r

q
s t e t f x x x t b u t

p

−
− −� � �� �                      

   ( ) ( ) ( ) ( ) ( ) ( )( )  1  1 

0

10

, ,
q

p

r r

bq
s t e t f x x x t x t f x x

p b

−  
≤ − − + 

 
� � �� �� �            

               ( ) ( ) ( ) ( )
  1  1 

0

10

, ,
q

p
bq

s t e t f x x f x x
p b

−  
≤ − − 

 
� � �  

                    ( ) ( ) ( ) ( )
  1  1 

10

q

p

r r

bq
s t e t x t x t

p b

−  
− − 

 
� �� ��        

               ( ) ( ) ( ) ( )
  1  1 

0 0

10

, ,
q

p
bq

s t e t f x x f x x
p b

−  
≤ − − 

 
� � �  

                   ( ) ( ) ( ) ( )
  1  1 

10

q

p

r r

bq
s t e t x t x t

p b

−  
− − 

 
� �� ��            

        ( ) ( ) ( ) ( )( )  1  1 

0

10

1 , 0
q

p

r

bq
s t e t x t f x x

p b

−  
= − − + < 

 
� �� �    (12a) 

and using (8b) in the second term of (11)  leads to   

                      ( ) ( ) ( ) ( )
  1

q

p
q

s t e t u t e t
p

β
− 

+ 
 
� �               

   ( ) ( ) ( ) ( ) ( )
 2 1

qq

pp
q p

s t e t e t sign s e t
p q

β η β
−−  

≤ − − +  
  

� � �      

         ( ) ( ) ( ) ( ) ( )
  1

q

p
q

s t e t e t e t sign s
p

β β η
− 

= − + − 
 

� � �     

                          ( ) ( ) ( )
  1

q

p
q

s t e t sign s
p

η
−

≤ − �  

                               ( ) ( ) 0t s tρ= − <                              (12b) 

with                    ( ) ( )
  1

0
q

p
q

t e t
p

ρ η
−

= >�                           (13) 

(12a) and (12b) show that  

        ( ) ( ) ( ) ( )( )  1  1 

0

10

1 ,
q

p

r

bq
V s t e t x t f x x

p b

−  
< − − + 

 

� � �� �   

               ( ) ( ) ( ) ( ) 0t s t t s tρ ρ− ≤ − <     for 0s >            (14) 

(ii) If 0s < , using (9a) in the first term of (11), we have 

            ( ) ( ) ( ) ( ) ( )( )  1

 1 ,
q

p

r

q
s t e t f x x x t b u t

p

−
− −� � �� �                      

    ( ) ( ) ( ) ( ) ( ) ( )( )  1  1 

0

10

, ,
q

p

r r

bq
s t e t f x x x t x t f x x

p b

−  
≤ − + + 

 
� � �� �� �            

               ( ) ( ) ( ) ( )
  1  1 

0
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, ,
q

p
bq

s t e t f x x f x x
p b

−  
≤ − 

 
� � �  

                 ( ) ( ) ( ) ( )
  1  1 

10

q

p

r r

bq
s t e t x t x t

p b

−  
+ − 

 
� �� ��            

          = ( ) ( ) ( ) ( )( )  1  1 

0

10

1 , 0
q

p

r

bq
s t e t x t f x x

p b

−  
− + < 

 
� �� �      (15a) 

and using (9b) in the second term of (10)  leads to   

                       ( ) ( ) ( ) ( )
  1

q

p
q

s t e t u t e t
p

β
− 

+ 
 
� �     
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      ( ) ( ) ( ) ( ) ( )
 2 1

qq

pp
q p

s t e t e t sign s e t
p q

β η β
−−  

≤ − +  
  

� � �      

                  ( ) ( ) ( )( ) ( ) ( )
  1

q

p
q

s t e t e t e t s t
p

β β η
−

= + −� � �           

                                ( ) ( ) 0t s tρ≤ − <                              (15b) 

(15a) and (15b) mean that 

                           ( ) ( ) 0V t s tρ< − <�  for 0s ≠                 (16) 

Remark 2.1: Although the expression ( )tρ  in (13) contains the 

factor ( )
  1

q

pe t
−

� , it will be seen from Figure 3 and Remark 3.1 in 

Section 3 that ( )e t�  is greater than a positive constant before 

( )s t  converges to zero in a finite time. Then, ( ) 0tρ δ≥ > , 

where δ  is a positive constant.  Therefore, according to 

Lyapunov stability theory, the terminal sliding variable ( )s t  

will be driven to zero in a finite-time if the control signal u(t) is 

designed such that the bounded conditions in (8a) ~ (9b) are 

satisfied, and the tracking error ( )e t  will converge to zero in a 

finite time on the terminal sliding mode surface ( ) 0s t = . 

Remark 2.2: It has been shown in Theorem 2.1 that, because  

the nonminimum phase system (1) has a zero on the right half 

s-plane, the control signal and its derivative must satisfy the 

bounded conditions in (8a) ~ (9b) in order to guarantee that the 

control signal can drive the terminal sliding variable ( )s t  to 

converge to zero. In this paper, the control signal u(t) is 

constructed as follows: 

(a) For 0s > , the changing rate of ( )u t  is chosen as: 

             ( ) ( ) ( )( )0

10

1
,ru t x t f x x

b
= +� �� �                         (17) 

which satisfies the bounded condition in (8a), and the control 

input ( )u t  is updated as follows: 

                ( ) ( ) ( )( ) 

1

0
10

1
,

t

n r

t

u t u x f x x d
b

τ τ= + +∫ �� �              (18) 

where nu  is a negative number or function, which is chosen 

such that the bounded condition in (8b) is satisfied, that is,  

    ( ) ( )( ) ( ) ( ) 

1

2

0
10

1
,

q

p

t

n r

t

p
u x f x x d e t sign s

b q
τ τ β η

−
+ + < − −∫ �� � �    (19a) 

or  ( ) ( )( ) ( ) ( ) 

1

2

0
10

1
,

q

p

t

n r

t

p
u x f x x d e t sign s

b q
τ τ β η

−
< − + − −∫ �� � �     (19b) 

In fact, if the absolute value of nu  is large enough, the bounded 

condition in (19a) or (19b) can always be satisfied. 

(b) For 0s < , the changing rate of ( )u t  is chosen as: 

             ( ) ( ) ( )( )0

10

1
,ru t x t f x x

b
= − +� �� �                       (20) 

which satisfies the bounded condition in (9a), and the control 

input ( )u t  is updated by: 

                ( ) ( ) ( )( ) 

1

0
10

1
,

t

p r

t

u t u x f x x d
b

τ τ= − +∫ �� �              (21) 

where pu  is a positive number or function, which is chosen 

such that the bounded condition in (9b) is satisfied, that is,  

     ( ) ( )( ) ( ) ( ) 

1

2

0
10

1
,

q

p

t

p r

t

p
u x f x x d e t sign s

b q
τ τ β η

−
> + + −∫ �� � �      (22) 

It is seen that, if value of pu  is large enough, the bounded 

condition in (22) can always be satisfied. 

Remark 2.3: Please note that the upper limit t of the integrals in 

(18) and (21) cannot go to infinity, because the terminal sliding 

variable ( )s t  is driven to zero in a finite time, and the upper 

limit t of the integrals in (18) and (21) must be less than or 

equal to the convergence time of the terminal sliding variable 

( )s t .  Therefore the variable structure control signal u(t) in 

(18) and (21) is upper and lower bounded. 

Remark 2.4: It is noted that, in the design of conventional 

sliding mode control systems in [22]-[25], Lyapunov stability 

theory is used to directly determine the values of control signals 

in order to guarantee the stability and error convergence of 

closed-loop systems. However, considering the characteristics 

of nonminimum phase systems in this paper, we use Lyapunov 

stability theory to determine the bound information of the 

control signal and its changing rate, and the dynamic control 

signal can then be constructed, subject to the bounded 

constraints, such that the finite time error convergence of 

closed-loop system is achieved. 

Remark 2.5: It is easy to see that, in order to satisfy the 

bounded conditions in (8a) ~ (9b) the dynamic control signal 

may not be unique, and many different control signals, 

satisfying the bound conditions in (8a) ~ (9b), may be designed 

to achieve the finite time error convergence. 

 

III.  A SIMULATION EXAMPLE 

In this simulation section, we consider the following 

second-order nonminimum phase linear system: 

                   ( ) ( ) ( ) ( ) ( )2 1 1x t a x t a x t u t b u t= + + −�� � �              (23)  

where 1 2a = − , 2 3a = − , 1 2b = , and system initial values are 

( )0 0.9x =  and ( )0 0x =� .  

Now, in this simulation, we assume that the system parameters 

1a , 2a , and 1b  are unknown, but the following bounded 

conditions are known: 

                   1 2.5,a ≤  2 3.5,a ≤  and 11.5 2.5b< <          (24) 

Then the upper bound of ( ) ( )( ) ( ) ( ), 3 2f x t x t x t x t= − −� �  is of 

the form: 

                       ( ) ( )( ) ( ) ( )0 , 3.5 2.5f x t x t x t x t= +� �           (25) 
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The desired reference signal for the system out ( )x t  to follow 

in this example is given by 

                                       ( ) ( )2sinrx t t=                           (26) 

and the terminal sliding variable is defined as: 

                        ( ) ( ) ( )( ) ( )
3/1

4s t e t sign e t e t= +� �               (27) 

where the tracking error ( ) ( ) ( )re t x t x t−� . 

Figure 1.1 ~ Figure 1.4 show the good performance of the 

output tracking, tracking error ( )e t , terminal sliding variable 

( )s t , and control input ( )u t , respectively, where two 

parameters nu  and pu  in (17) and (20) are chosen as: 

                                  1.5,nu = −  and 1.5pu =                   (28) 

It is seen that the terminal sliding variable s(t) converges to 

zero in 1.5 seconds and the tracking error converges to zero in 

2 seconds. 
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Fig. 1.1. The output tracking 
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Fig. 1.2. The tracking error e(t) 
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Fig. 1.3.  Terminal sliding variable s(t) 
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Fig. 1.4. Control input u(t) 

Figure 2.1~Figure 2.4 show the simulation results where 

two parameters nu  and pu  in (17) and (20) are chosen as: 

                              4.5,nu = −  and 4.5pu =                      (29) 

It is seen that the terminal sliding variable s(t) converges to 

zero in 0.3 seconds and the tracking error converges to zero in 

0.9 seconds.  
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Fig. 2.1. The output tracking 

( )x t  

( )rx t  
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Fig. 2.2. The tracking error e(t) 
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  Fig. 2.3.  Terminal sliding variable s(t) 
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Fig. 2.4.  Control input u(t) 

Remark 3.1: Figure 3 shows the convergence comparison 

between the terminal sliding variable ( )s t  and ( )e t� , the first-

order derivative of the tracking error ( )e t , where two 

parameters nu  and pu  in (17) and (20) are chosen as: 

                              2.8,nu = −  and 2.8pu =                      (30) 
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Fig. 3. Convergence comparison between ( )s t  and ( )e t�  

It is seen that, before the terminal sliding variable ( )s t  

converges to zero, ( ) 1e t >� , which makes that ( )tρ  in (12) 

satisfies 

                                       ( ) 0tρ δ≥ >                                 (31) 

(31) guarantees that the variable structure control signal ( )u t  in 

(18) and (21) can drive the terminal sliding variable  ( )s t  to 

converges to zero in a finite time, and then the tracking error 

converges to zero in a finite time on the terminal sliding mode 

surface ( ) 0s t = . 

III. CONCLUSION 

A new terminal sliding mode tracking control scheme has 

been developed in this paper for a class of nonminimum phase 

systems with uncertain dynamics. The main contribution of this 

research is that, unlike the design of conventional sliding mode 

control systems, Lyapunov stability theory in this paper is used 

to determine the bounded information of control signal and its 

first-order derivative, a dynamic control law can then be 

designed, subject to the bounded conditions, to drive the 

terminal sliding variable to zero in a finite time, and the 

tracking error can then converge to zero in a finite time on the 

terminal sliding mode surface. A simulation example has been 

given in support of the proposed new terminal sliding mode 

control scheme. The extension of this scheme to the terminal 

sliding mode control of high-order nonminimum phase systems 

with more than 2 zeros on the right half s-plane is under 

authors’ investigation. 

REFERENCES 

 

[1] J.-J. E. Slotine, Applied nonlinear control: Prentice-Hall, 1991. 

[2]    G. F. Franklin, J. D. Powell, and A. Emami-Naeini, Feedback Control of 

Dynamic Systems: Addison Wesley, 1991. 

[3]   L. Qiu and E. J. Davison, "Performance limitations of nonminimum phase 

systems in the servomechanism problem", Automatica, vol. 29, pp. 337-

349, 1993. 

[4]    J. Chen, L. Qiu, and O. Toker, "Limitations on maximal tracking 

accuracy", IEEE Trans. Aotom. Control, vol. 42, no. 2, pp. 326-331, 

2000. 

151

Authorized licensed use limited to: SWINBURNE UNIV OF TECHNOLOGY. Downloaded on August 12,2010 at 07:51:51 UTC from IEEE Xplore.  Restrictions apply. 



  

 

 

[5]  S. Devasia, D. Chen, and B. Paden, "Nonlinear inverse-based output 

tracking", IEEE Trans. Aotom. Control, vol. 41, no. 7, pp. 930-942, 

1996. 

[6]  L. R. Hunt, and G. Meyer, "stable inversion for nonlinear systems", 

Automatica, vol. 33, pp. 1549-1554. 

[7]   M. Benosman and G. L. Vey, "stable inversion of SISO nonminimum 

phase linear systems through output planning: An experimental 

application to the one-link flexible manipulator", IEEE Trans. on 

Control System Technology, vol. 11, pp. 588-597, 2003. 

[8]  S. Devasia, D. Chen, and B. Paden, "Stable inversion for nonlinear 

nonminimum phase time-varying systems", IEEE Trans. Aotom. Control, 

vol. 43, no. 2, pp. 283-288, 1998. 

 [9]   K. Graichen, V. Hagenmeyer and M. Zeits, " A new approach to inverse-

based feedforward control design for nonlinear systems", Automatica, 

vol. 41, pp. 2033-2041, 2005. 

[10]  K. J. Astrom and B. Wittenmark, Adaptive Control, 2nd ed. Reading, 

MA: Addison-Wesley, 1995. 

[11]  G. C. Goodwin and K. S. Sin, Adaptive Filtering Prediction and 

Control. Englewood Cliffs, NJ: Prentice-Hall, 1984. 

[12]   P. A. Ioannou and J. Sun, Robust Adaptive Control: Prentice Hall, 1996. 

[13]  R. Sepulchre, M. Arcak, and A. R. Teel, "Trading the stability of finite 

zeros for global stabilization of nonlinear cascade systems", IEEE Trans. 

Automatic Control, vol. 47, no. 3, pp. 521-525, 2002. 

 [14] Z. Lin and G. Tao, "Adaptive control of a weekly nonminimum phase 

linear system", IEEE Trans. Autom. Control, vol. 45, no. 4, pp. 824-829, 

2000. 

 [15] D. A. Suarez and R. Lozano, "Adaptive control of nonminimum phase 

systems subject to unknown bounded disturbances, " IEEE Trans. 

Automatic Control, vol. 41, no. 12, pp. 1830-1836, 1996. 

[16]  J. Huang, "Asymptotic tracking of a nonminimum phase nonlinear 

system with nonhyperbolic zero dynamics", IEEE Trans. Aotom. 

Control, vol. 45, no. 3, pp. 542-546, 2000. 

[17]  R. Marino and R. Tomei, "A class of globally output feedback 

stabilizable nonlinear nonminimum phase systems", IEEE Trans. 

Automatic Control, vol. 50, no. 12, pp. 2097-2101, 2005 

[18] Z. Man and X. Yu, "Terminal sliding mode control pf MIMO linear 

systems", IEEE Trans. on Circuits and Systems I: Fundamental theory 

and applications, vol. 44, no. 11, pp. 1065-1070, 1997. 

[19]  Z. Man, M. Paplinski, and H. Wu, "A robust terminal sliding mode 

control scheme for rigid robotic manipulators", IEEE Trans.  Automat. 

Control, vol. 39, pp. 2464-2469, 1994. 

[20]  X. Yu and Z. Man, "Model reference adaptive control systems with 

terminal sliding modes", Int. J. Control, vol. 64, pp. 1165-1176, 1996. 

[21]  Y. Feng, X. Yu, and Z. Man, "Non-singular terminal sliding mode 

control of rigid manipulators", Automatica, vol. 38, pp. 2159-2167, 

2002.  

[22]  V. Utkin, "Variable structure systems with sliding modes," IEEE Trans.   

Automatic Control, vol. 22, pp. 212-222, 1977. 

[23] K-K. D. Young, “Design of variable structure model following control 

system,” IEEE Trans. Automat. Contr., vol. 23, pp. 1079–1085, 1978. 

[24]  C. M. Dorling and A. S. I. Zinober, “Two approaches to hyperplane 

design in multivariable variable structure control systems,” Int. J. Contr., 

vol. 44, pp. 65–82, 1986. 

[25]  R. A. Decarlo, S. H. Zak, and G. P. Matthews, “Variable structure 

control of nonlinear multivariable systems: A tutorial,” Proc. IEEE, vol. 

76, pp. 212–231, 1988. 

 

 

 

 

 

 

 

 

152

Authorized licensed use limited to: SWINBURNE UNIV OF TECHNOLOGY. Downloaded on August 12,2010 at 07:51:51 UTC from IEEE Xplore.  Restrictions apply. 


